
Movie Recommendation System

DSGA 1004: Big Data
Aneesh Shetye1, Anubha Singh2, Anchal Agrawal3

New York University
1axs10302@nyu.edu 2as18806@nyu.edu 3aa11597@nyu.edu

Introduction
Recommendation systems are essential for helping users
navigate through a vast array of content, they personalize
suggestions based on individual preferences, enhancing user
engagement and satisfaction. This capstone project focuses
on recommendation systems on the Movielens dataset to
build two main components: a collaborative-filter-based rec-
ommender and a customer segmentation mechanism.

In its first part, the project identifies users with similar
movie-watching habits, emphasizing patterns over ratings.
We compute these by using rated movies as a proxy for indi-
vidual movie ratings and further show that the correlation in
rating scores are indeed more for users who have rated simi-
lar movie titles (in our case movie-ids). This can be thought
of as a consequence of movie ratings being an external type
of feedback- the fact that a user has rated a movie is a testa-
ment to the fact that it has elicited feelings strong enough to
drive the user to do so.

The second part of our project aims to recommend movies
to users. As a baseline, we test the popularity-based rec-
ommendation model which recommends the highest rated
movies (across all users) to every user. Further, we use the
Alternating Least Squares (ALS) Model from Spark’s ml li-
brary to get latent representations of user and movies and
.

Dataset
The provided MovieLens dataset includes two versions:
the small dataset consists of approximately 9,000 movies
and 600 users (links.csv, movies.csv, ratings.csv, tags.csv).
The full dataset consists of 86,000 movies and 330,000
users (links-large.csv, movies-large.csv, ratings-large.csv,
tags-large.csv, and genome-scores-large.csv).

Part 1: Customer Segmentation
Top 100 pairs
Here we have implemented the get top 100 function, de-
signed to identify the top 100 pairs of similar users based
on their movie preferences. We start by utilizing Locality-
Sensitive Hashing (LSH) and user MinHashes to efficiently

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approximate nearest neighbors. Upon initialization, we cre-
ate a dictionary to store the top user pairs and their simi-
larity scores, initializing all scores to 0. Our function then
iterates through each user, finding their similar users using
LSH and computing Jaccard similarity scores between pairs.
For each user pair, if the similarity score exceeds the lowest
score among the top 100 pairs, it updates the dictionary ac-
cordingly, ensuring it maintains the most similar user pairs.
Ultimately, the function returns the updated dictionary con-
taining the top 100 similar user pairs based on their movie
preferences.

Calculating Correlation
Here we have the calc corr function, which computes
the correlation between the ratings of shared movies among
pairs of users. It operates by iterating through each user pair
provided as input, extracting their respective movie lists and
corresponding ratings. For each pair, it identifies the com-
mon movies and constructs dictionaries mapping movies to
their ratings for both users. If there are no common movies
or only one common movie, the correlation is set to 0. Oth-
erwise, it calculates the correlation coefficient between the
ratings of common movies. The resulting correlation coef-
ficients are collected and returned, offering insights into the
similarity of preferences between user pairs based on their
shared movie ratings.

Results
When we perform the operations above, and calculate the
following:
1 corr_random = calc_corr(random_100,

user_movies, user_ratings)

Here, we find that the correlation between random100
(paired users), movies that the user has rated and the ratings
that the user has given is as follows:

Correlation Dataset
0.67 Small
0.825 Big

Table 1: Correlations



Part 2: Movie Recommendation
Pre-processing
1. Filtering Users with Few Ratings: Initially, we ex-

cluded users from our dataset if they had fewer than 3
ratings to ensure that we have sufficient data per user.

2. Removing Duplicate Ratings: After filtering out users,
we then eliminated any duplicate ratings given by the
same user for the same item to ensure that each user-
item interaction is unique and avoids skewing the analy-
sis with redundant data.

3. Splitting into Train, Test, and Validation Sets: The
next step involved dividing our pre-processed dataset into
three separate sets: training, testing, and validation. This
split was based on the userId such that there is a balanced
representation of users across all sets.

• Weighting and Distribution: We allocated 60% of
the data to the training set, 20% to the testing set, and
20% to the validation set.

• User Representation: We ensured that every user was
present in each of the three sets at least once. This
strategy is designed to mitigate the “cold start” prob-
lem, where new users or items have insufficient data
for effective modeling. By including each user in every
set, we enable the model to learn from and generalize
across a diverse range of user behaviors.

Model
Baseline Model
A popularity-based recommendation model operates by sug-
gesting items to users based on their overall popularity or
frequency of selection by all users within a dataset. To es-
tablish this model, we start by calculating the popularity of
items using metrics like the number of views, purchases,
or ratings they have garnered. This calculation assigns each
item a score or ranking that reflects its popularity among
users. When generating recommendations, the model simply
presents users with the most popular items based on these
calculated scores. This method doesn’t take into considera-
tion individual user preferences or behaviors; instead, it of-
fers the same set of popular items to all users uniformly.

To evaluate the effectiveness of this popularity-based
model, we compare the items recommended by the model
with the items that users have actually rated or interacted
with. This comparison allows us to assess how well the
recommended popular items align with user preferences.
The evaluation process focuses on calculating accuracy by
measuring the percentage of correctly recommended items
out of all user interactions. For instance, in the context of
movie recommendations, we might evaluate the model’s
accuracy by comparing the top 100 recommended movies
to the movies that users have rated. The resulting accuracy
score provides a quantitative measure of the model’s
performance in terms of recommending popular items that
resonate well with user preferences across the dataset.

Metric mAP
Train 0.0694
Validation 0.0275
Test 0.0285

Table 2: mAP Results for Baseline Model

Latent Factor Model
Collaborative filtering is a popular technique in recom-
mender systems that addresses missing entries in a user-item
association matrix. Spark.ml offers model-based collabora-
tive filtering, representing users and products with latent
factors to predict missing entries. This is achieved through
the alternating least squares (ALS) algorithm, which learns
these latent factors efficiently.

r̂ui ≈ f(User = u, Item = i)
Here we tuned rank (number of latent factors) and regular-

ization factors (penalty coefficient) in order to find the best
parameter combination. Specifically, we tried rank = [5, 20,
50] and reg = [0.01, 0.1, 1]. The results we obtained were as
follows:

Rank RegParam Validation RMSE Validation mAP
5 0.01 1.050 0.0447
5 0.1 0.911 0.0464
5 1 1.355 0.0377
20 0.01 1.079 0.0427
20 0.1 0.906 0.0459
20 1 1.356 0.0377
50 0.01 1.106 0.0414
50 0.1 0.909 0.0458
50 1 1.355 0.0377

Table 3: RMSE and mAP for Different Ranks and Reg-
Params

After reviewing the data, we found that the best RMSE
result occurred with a regularization parameter of 0.1 and a
rank of 20, giving us a value of 0.906. Similarly, the highest
Validation mAP score of 0.0464 was obtained with a rank
of 5 and a regularization parameter of 0.1. Across different
ranks, we consistently observed better results when using a
regularization parameter of 0.1.

These findings suggest that lower ranks and moderate reg-
ularization parameters tend to produce better RMSE values.
Similarly, for mAP, lower ranks and average regularization
parameters appear to yield the best results.

Comparing the models
The popularity-based baseline model relies solely on item
popularity metrics, such as views, purchases, or ratings, to
generate recommendations. It offers uniform recommenda-
tions to all users, disregarding individual preferences. In
contrast, the latent factor collaborative filtering model lever-
ages sophisticated techniques to capture user-item interac-
tions. By representing users and items with latent factors
and optimizing them using the ALS algorithm, this model



Figure 1: Training Vs Validation mAP for ALS Model

learns from observed interactions to predict missing entries
in user-item matrices.

In terms of effectiveness, the baseline model’s recom-
mendations are straightforward but lack personalization, po-
tentially leading to less relevant suggestions for individual
users. On the other hand, the collaborative filtering model
aims to provide more tailored recommendations by captur-
ing underlying patterns in user preferences and item charac-
teristics.

After evaluating the results, it is seen that the ALS model
outperforms the simple baseline model. With a mAP of
0.046, the ALS model shows better performance compared
to the baseline model’s mAP of 0.027.

Conclusion
In Part 1 of this project, we aimed to segment customers
based on their movie-watching styles using MinHash. To
validate our results, we compared the average correlation
of numerical ratings within the movie twins against that of
100 randomly selected pairs from the dataset. Our results
revealed a correlation of 0.825 on the larger dataset.

In Part 2 of the project, we investigated two types of
recommendation models: a popularity based model and a
collaborative filtering based recommendation model using
ALS.

File Description
• Part 1:

– Outputs for Small:
customer-segmentation.ipynb

– Outputs for All: customer-segmentation(all).ipynb
• Part 2:

– Data Filtering and Splitting: split prep.py
– Baseline Model: popularity baseline.py,
utils.py, test similarity.py

– ALS Model: als new.py

References
Spark. 2022. Collaborative Filtering.


	Introduction
	Dataset
	Part 1: Customer Segmentation
	Top 100 pairs
	Calculating Correlation
	Results

	Part 2: Movie Recommendation
	Pre-processing

	Model
	Baseline Model
	Latent Factor Model
	Comparing the models

	Conclusion
	File Description

